Threshold responses to morphogen gradients by zero-order ultrasensitivity
نویسندگان
چکیده
Translating a graded morphogen distribution into tight response borders is central to all developmental processes. Yet, the molecular mechanisms generating such behavior are poorly understood. During patterning of the Drosophila embryonic ventral ectoderm, a graded mitogen-activated protein kinase (MAPK) activation is converted into an all-or-none degradation switch of the Yan transcriptional repressor. Replacing the cardinal phosphorylated amino acid of Yan by a phosphomimetic residue allowed its degradation in a MAPK-independent manner, consistent with Yan phosphorylation being the critical event in generating the switch. Several alternative threshold mechanisms that could, in principle, be realized by this phosphorylation, including first order, cooperativity, positive feedback and zero-order ultrasensitivity, were analyzed. We found that they can be distinguished by their kinetics and steady-state responses to Yan overexpression. In agreement with the predictions for zero-order kinetics, an increase in Yan levels did not shift the degradation border, but significantly elevated the time required to reach steady state. We propose that a reversible loop of Yan phosphorylation implements a zero-order ultrasensitivity-like threshold mechanism, with the capacity to form sharp thresholds that are independent of the level of Yan.
منابع مشابه
A BMP-FGF Morphogen Toggle Switch Drives the Ultrasensitive Expression of Multiple Genes in the Developing Forebrain
Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Pro...
متن کاملNEWS AND VIEWS Zero-order switches and developmental thresholds
A long-standing problem in developmental biology, closely associated with pattern formation, is how continuous morphogen gradients are translated into sharp response borders that define clearcut territories in which cells express different sets of genes. To understand how gradients can generate thresholds, several mechanisms have been investigated over the years. Initially, most of these studie...
متن کاملZero-order switches and developmental thresholds
A long-standing problem in developmental biology, closely associated with pattern formation, is how continuous morphogen gradients are translated into sharp response borders that define clearcut territories in which cells express different sets of genes. To understand how gradients can generate thresholds, several mechanisms have been investigated over the years. Initially, most of these studie...
متن کاملBorder formation in a Bmp gradient reduced to single dissociated cells.
Conversions of signaling gradients into sharp "all-or-none" borders are fundamental to tissue and organismal development. However, whether such conversions can be meaningfully reduced to dissociated cells in culture has been uncertain. Here we describe ultrasensitivity, the phenomenon equivalent to an all-or-none response, in dissociated neural precursor cells (NPCs) exposed to bone morphogenet...
متن کاملUltrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects.
A previous analysis of covalent modification systems (Goldbeter, A., and Koshland, D. E., Jr. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 6840-6844) showed that steep transitions in the amount of modified protein can occur when the converter enzymes are saturated by their protein substrate. This "zero-order ultrasensitivity" can further be amplified when an effector acts at more than one step in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Systems Biology
دوره 1 شماره
صفحات -
تاریخ انتشار 2005